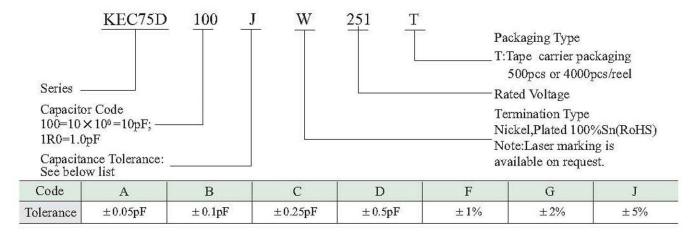


KEC75D (.080" x .050")


♦KEC75D Capacitance Table

Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC
0.1	0R1			3.0	3R0		250V Code 251	30	300	F,G,	250V Code 251
0.2	0R2			3.3	3R3			33	330		
0.3	0R3			3.6	3R6			36	360		
0.4	0R4			3.9	3R9			39	390		
0.5	0R5			4.3	4R3	A,B, C,D		43	430		
0.6	0R6			4.7	4R7			47	470		
0.7	0R7			5.1	5R1			51	510		
0.8	0R8			5.6	5R6			56	560		
0.9	0R9	A,B, C,D	250V Code 251	6.2	6R2			62	620		
1.0	1R0			6.8	6R8	B,C F,G, J		68	680		
1.1	1R1			7.5	7R5			75	750		
1.2	1R2			8.2	8R2			82	820		
1.3	1R3			9.1	9R1			91	910		
1.4	1R4			10	100			100	101		
1.5	1R5			11	110			110	111		
1.6	1R6			12	120			120	121		
1.7	1R7			13	130			130	131		
1.8	1R8			15	150			150	151		
1.9	1R9			16	160			160	161		
2.0	2R0			18	180			180	181		
2.1	2R1			20	200			200	201		
2.2	2R2			22	220			220	221		
2.4	2R4			24	240						
2.7	2R7			27	270						

Remark: special capacitance, tolerance and WVDC are available, consult with Kete.

Part Numbering

♦ KEC75D Chip Dimensions

unit:inch(millimeter)

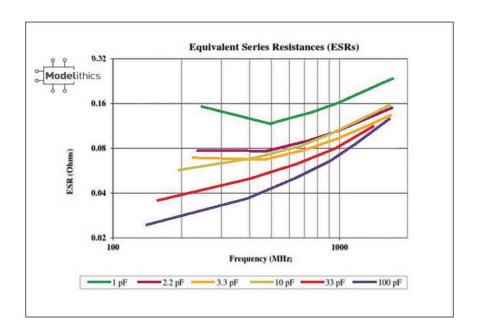
Series	Term. Code	Type / Outlines		Distrik			
			Length (Lc)	Width (Wc)	Thickness (Tc)	Overlap (B)	Plated Material
KEC75D	w	Te Chip	.080±.008 (2.03±0.20)	.050±.008 (1.27±0.20)	$.040 \pm .006$ (1.02 ± 0.15)	$.200 \pm .010$ (0.50 ± 0.25)	Sn/Ni (RoHS)

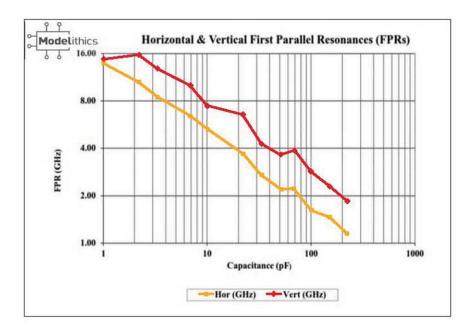
Design Kits

These capacitors are 100% RoHS. Kits contain 10(ten) pieces per value; number of values per kit varies, depending on case size and capacitance.

Kit	Description (pF)	Values (pF)	Tolerance
DKKEC75D01	0.1 - 2.0	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.6, 1.8, 2.0	$\pm 0.10 \mathrm{pF}$
DKKEC75D02	1.0 - 10	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2	$\pm 0.10 \mathrm{pF}$
	1.0 - 10	10	±5%
DKKEC75D03	10 - 100	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100	±5%
DKKEC75D04	10 - 220	10, 15, 18, 20, 24, 27, 30, 39, 47, 56, 68, 82, 100, 120, 150, 180, 220	±5%

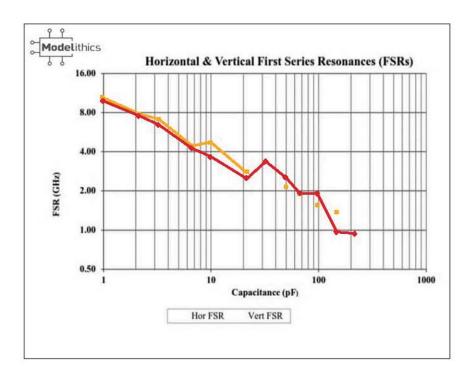
◆ Performance


Item	Specifications			
Quality Factor (Q)	2,000 min.			
Insulation Resistance (IR)	10 ⁵ Megohms min. @ +25°C at rated WVDC.			
insulation Resistance (IR)	10⁴ Megohms min. @ +125 °C at rated WVDC.			
Rated Voltage	250V			
Dielectric Withstanding Voltage (DWV)	250% of rated voltage for 5 seconds.			
Operating Temperature Range	-55°C to +175°C			
Temperature Coefficient (TC)	0 ± 30ppm/°C			
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater.			
Piezoelectric Effects	None			


♦ Environmental Tests

Item	Specifications	Method			
Terminal	Termination should not pull off.	Linear pull force exerted on axial leads soldered to			
Adhesion	Ceramic should remain undamaged.	each terminal. 2.0lbs.			
	No mechanical damage				
Resistance	Capacitance change: $-1.0\% \sim +2.0\%$	Preheat device to 150°C-180°C for 60 sec.			
to soldering heat	Q>500	Dip in 260°±5°C solder for 10±1 sec.			
	I.R. >10 G Ohms	Measure after 24±2 hours cooling period.			
	Breakdown voltage: 2.5 x WVDC				
	No mechanical damage	MIL-STD-202, Method 107, Condition A.			
	Capacitance change:±0.5% or 0.5pF max	At the maximum rated temperature (-55°C and 125°C			
Thermal	Q>2000	stay 30 minutes.			
Shock	I.R. >10 G Ohms	The time of removing shall not be more than 3 minutes.			
	Breakdown voltage: 2.5 x WVDC	Perform the five cycles.			
	No mechanical damage				
AND I	Capacitance change: $\pm 0.5\%$ or 0.5 pF max.	MIL-STD-202, Method 106.			
Humidity, Steady State	Q>300				
Steady State	I.R. >1 G Ohms				
	Breakdown voltage: 2.5 x WVDC				
	No mechanical damage				
Y YZ 1,	Capacitance change: $\pm 0.3\%$ or 0.3 pF max.	MIL-STD-202, Method 103, Condition A, with 1.5 Vol D.C. applied while subjected to an environment of 85° with 85% relative humidity for 240 hours minimum.			
Low Voltage Humidity	Q>300				
*	I.R. >1 G Ohms				
	Breakdown voltage: 2.5 x WVDC				
	No mechanical damage				
	Capacitance change: $\pm 2.0\%$ or 0.5pF max.	MIL-STD-202, Method 108, for 1000 hours, at 125°C 200% Rated voltage D.C. applied.			
Life	Q>500				
	I.R. >1 G Ohms				
	Breakdown voltage: 2.5 x WVDC				

♦ KEC75D Performance Curve



The First Parallel Resonance, FPR, is defined as the lowest frequency at which a suckout or notch appears in [S21]. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the capacitor electrode planes are parallel to the plane of the substrate; a vertical orientation means the electrode planes are perpendicular to the substrate.

♦ KEC75D Performance Curve

The First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] = 0, the FSR shall be considered as undefined. FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, as defined alongside the FPR plot; and mounting pad dimensions.

Definitions and Measurement conditions:

The definitions on the charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with a 50-Ohm termination. The measurement conditions are: substrate -- Rogers RO3003; substrate dielectric constant = 3.00; substrate thickness (mils) = 23; gap in microstrip trace (mils) = 23.6; microstrip trace width (mils) = 57.1; Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by KEC. The models are derived from measurements on a large number of parts disposed on several different substrates.